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1 Introduction

The natural rate of interest, or r∗, is a central concept in macroeconomics. It measures

the opportunity cost of investment in an economy producing at capacity, and it is typically

defined as the real interest rate consistent with stable inflation and output equating its long-

term potential (Wicksell, 1936). In real business cycle models, with and without nominal

or financial frictions, the natural rate of interest is time-varying and is driven by shocks to

either aggregate supply or aggregate demand.

As the natural rate of interest is unobservable, empirical researchers make assumptions

about the composition of r∗ in order to estimate its level. For example, in their seminal

contribution, Laubach and Williams (2003) model r∗ as driven by two processes: one that

affects aggregate supply through the growth rate of potential output (g) and another factor

(z) that captures disturbances to aggregate demand, such as shocks to household preferences.

They find evidence that both of these components are random walks.

In principle there is no clear theoretical justification why both drivers of r∗, g and z, need

to be non-stationary processes. In fact, theory suggests that shocks to aggregate demand,

such as fiscal or financial shocks, may weigh on aggregate demand only temporarily. In

this paper we re-estimate a benchmark model of r∗ under a looser set of prior parameter

restrictions in order to let the data determine the statistical properties of its components.

Using standard Bayesian methods and loose priors on the volatility parameters, our esti-

mates confirm earlier work suggesting that g (the growth component of r∗) is appropriately

modeled as having a unit root. However, our results also suggest that the non-growth com-

ponent of r∗ (z) should be modeled as having transitory shocks, which stands in contrast

to earlier findings. With transitory shocks to z, estimates of r∗ implied by our model are

markedly more volatile than those of previous studies; moreover we find the level of r∗ after

the Great Recession to be higher than commonly estimated in the literature.

There are methodological challenges when estimating models with latent factors. The
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standard practice under maximum likelihood estimation (MLE) (e.g. Laubach and Williams,

2003; Trehan and Wu, 2007; Clark and Kozicki, 2005) is to use the median unbiased estimator

of Stock and Watson (1998), which is designed to avoid the pileup problem (i.e. a tendency

for the maximum-likelihood estimates of certain volatility parameters to be biased toward

zero, see Stock, 1994). In this paper we use a Bayesian approach with uninformative priors

on reasonable regions of the parameter space to mitigate the pileup problem. We note that

the median unbiased estimator procedure can be viewed, from a Bayesian perspective, as

very precise (and asymptotically motivated) implicit prior beliefs about the volatilities of

the latent factors in order to mitigate the pileup problem. Bayesian methods allow us to

mitigate the problem under a less restrictive structure, making visible the effects of these

implicit priors on the final estimation of r∗.

The existence of transitory shocks to r∗ is economically important. For central banks

that use a short-term interest rate as their main policy tool, the difference between r∗ and

the real short-term rate provides a measure of the stance of monetary policy. Our model

estimates for the U.S. economy deliver a more procyclical median estimated path of r∗ over

the past several recessions. In particular, our median estimate of r∗ implies that the natural

rate of interest plummeted during the financial crisis of 2008 but has moved back up over

the past ten years to a level seen in the periods following the past several recessions. This

is in contrast to the most recent point estimates in Holston, Laubach, and Williams (2017)

in which r∗ fell during the financial crisis and remains well below the levels estimated for

earlier time periods.

Our results contrast with those of Laubach and Williams (2003) and Trehan and Wu

(2007), who do not find evidence of transitory shocks to r∗. Also, under looser priors, we

find that the data do provide some information on the volatility of z, in contrast to Kiley

(2015), though uncertainty about this component remains significant. Our finding that

transitory shocks affect r∗ may also have consequences for Pescatori and Turunen (2016),

who estimate r∗ using Bayesian methods while attempting to decompose the drivers of z.
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Our findings suggest that their use of comparatively restrictive priors, particularly on the

volatility parameters and the autoregressive parameters of z, may significantly affect their

results.

The paper proceeds as follows: Sections 2 and 3 briefly detail the model and estimation

strategy, Section 4 discusses the results and Section 5 concludes.

2 The r∗ Model

We estimate an augmented version of the Holston, Laubach, and Williams (2017) model, the

most recent update to the original Laubach and Williams (2003) study.This model features

an IS equation that drives the dynamics of the output gap, a “Philipps curve,” and evolutions

for the unobserved components such as the level and trend-growth rate of potential GDP

and the natural rate of interest. The six equations are:

ỹt = a1ỹt−1 + a2ỹt−2 +
ar

2
(r̃t−1 + r̃t−2) + σ1ε1,t (2.1)

πt = b1πt−1 + (1− b1)
4

∑

i=2

πt−i

3
+ byỹt−1 + σ2ε2,t (2.2)

r∗t = gt + zt (2.3)

zt = ρzzt−1 + σ3ε3,t (2.4)

y∗t = y∗t−1 + gt−1 + σ4ε4,t (2.5)

gt = µg (1− ρg) + ρggt−1 + σ5ε5,t (2.6)

where y is log-real GDP, y∗ is log-potential GDP and ỹ ≡ y− y∗. Similarly, r̃ ≡ r− r∗ where

r is the real short-term interest rate and r∗ is the natural rate of interest.

The specification listed in equations (2.1) to (2.6) allows both g and z to be either

random walks or stationary AR(1) processes. We focus on two of the nested specifications

of the model, the baseline specification with ρg = ρz = 1 by assumption and an alternative
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specification where we estimate ρz and assume ρg = 1.1

3 Estimation Procedure

We estimate the model in two ways, using Bayesian methods under loose priors and by

maximum likelihood as in Holston, Laubach, and Williams (2017). We see the three-stage

MLE process as a way of choosing a specific (and asymptotically motivated) degenerate

implicit prior over ratios of the volatilities: λg ≡ σ5

σ4

and λz ≡ ar
σ3

σ1

. In order to mitigate

the pileup problem, point estimates of these ratios are constructed in each of the first two

stages by estimating simplifications of the model.2 Those estimates λg and λz are then

imposed during the maximization of the likelihood function in the final step, which reduces

the implied level of parameter uncertainty.

The fully Bayesian estimation uses much less restrictive prior distributions on reasonable

regions of the parameter space, as discussed in DeJong and Whiteman (1993), Primiceri

(2005), and Kim and Kim (2018), to avoid the pileup problem. Formally, after specifying the

priors, we construct the likelihood from the linear-Gaussian filter output and use the random-

walk Metropolis-Hastings algorithm to generate draws from the posterior distributions of the

model parameters. Each draw of the parameters from the posterior distribution implies a

sampled path for the unobserved variables, including r∗t , as in Carter and Kohn (1994) and

Frühwirth-Schnatter (1994).3

1We have also examined the other permutations of these settings. For example, we find that the data
supports the assumption in Laubach and Williams (2003) that g is a random walk. Results from a model in
which both z and g are estimated AR(1) processes are included in the online appendix.

2For details on the specifics of the three-stage procedure, see Laubach and Williams (2003).
3Textbook treatments of this approach can be found in Geweke (2005) and Herbst and Schorfheide (2015).

The online appendix contains the state space representation of the model used in the estimation as well as
additional technical details and sources of information about the data.
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3.1 Prior Distributions

The marginal prior distributions of the parameters are given in Table 1. These priors were

chosen with a mind toward being minimally informative.4 The priors on the standard devi-

ations of the unobserved shock processes play a critical role and we choose marginal priors

to be uniform between 0 and 5, in contrast to the common usage of inverse gamma priors in

the literature. While inverse gamma distributions have a domain that runs along the pos-

itive real line, their mass is concentrated in a fairly small area, and are therefore relatively

informative in the context of this model, as demonstrated by Kiley (2015). To avoid the

pileup problem we restrict λg and λz to take values in [0.01, 5], which represents much less

a priori certainty than previous studies.5 Regarding the prior of ρz, the choice of N(1, 1
2

2
) is

meant to reflect the a priori belief that the z processes is highly persistent and could have a

unit root.6

4 Results

Figure 1 displays the higher parameter uncertainty revealed by Bayesian estimation under

priors which are looser than the implicit priors used in the MLE procedure. The MLE

procedure fixes the ratios of the relevant volatility parameters (λg and λz) to specific values

displayed by the red lines. Under our Bayesian estimation these ratios are free to take values

between 0.01 and 5. The posterior distributions have modes which are not far from the

values used in MLE, but their standard deviations are considerable. Accounting for this

parameter uncertainty has implications for r∗, even in the baseline model.7

4See the online appendix for additional detail.
5The implied prior distributions for λg and λz (the results of marginal priors of their components and the

restriction discussed above) along with the priors from Pescatori and Turunen (2016) and the MLE values
are shown in the online appendix.

6As noted by Sims (1988), the shape of the likelihood function is not changed by the inclusion of unit or
explosive roots, so there is no need to truncate the distribution centered at one.

7As a check, we estimated a version of the model that imposes, via degenerate priors, the MLE point-
estimates for λg and λz within the Bayesian estimation. When we did this, we recovered the same median
path of r∗ as in the MLE estimation.
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Figure 2 shows the effects of more completely incorporating parameter uncertainty on

the median estimate of r∗. The relaxation of the λg and λz restrictions imposed by the MLE

methodology generates a median path of the natural rate of interest which is more volatile

and procyclical than its MLE counterpart. We note that the level of uncertainty about r∗ is

considerable.

As seen in Figure 3, the majority of the uncertainty about r∗ comes from the non-growth

component, z, the uncertainty of which we now more fully appreciate. While the priors

on the parameters of both g and z are identical, the relative magnitudes of the credible

sets shown in the figure indicate that the likelihood function generates considerably more

concentration of posterior mass for the parameters of g relative to those of z.

As shown by panel (a) of Table 2, the increased uncertainty about z comes predominantly

from the wider range of plausible values for the volatility parameter governing its shocks,

σ3.
8 While the peak of the posterior distribution of σ3 in the baseline specification is near

the point estimate of the parameter under MLE, the distribution is skewed and the standard

deviation is fairly large. Under MLE, the process required to avoid the pileup problem via

a point estimate of λz necessarily results in tighter restrictions on the potential values of σ3.

Bayesian estimation allows the pileup problem to be mitigated with less restrictions, revealing

that our uncertainty about z is large. Taking all this into account, we next reexamine a key

finding in the earlier literature: that z is a random walk.

Using the Savage-Dickey density ratio (SDDR) we find substantial statistical evidence

that the data prefers not to assume that z is a random walk. Dickey (1971) constructs an

exact Bayes factor comparing two nested models that differ only insofar as one model (here,

the baseline specification) fixes a model parameter at a specific value (ρz = 1), while the

other model (the alternative specification) estimates it. In such a case, the Bayes factor can

8Importantly, our posterior distributions for the volatility parameters σ3 and σ5, shown in the online
appendix, still show no signs of pileup.
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be written in terms of the output of only the unrestricted model:

Balt,baseline =
palt(ρz = 1)

palt(ρz = 1|Y )

where palt(ρz = 1|Y ) is the value of the pdf of the marginal posterior distribution for ρz

under the alternative specification at the point ρz = 1, and palt(ρz = 1) is the value of the

pdf of the prior on ρz evaluated at 1, also under the alternative specification.

The SDDR provides a very intuitive signal: when the weight of the marginal posterior

goes up relative to the prior, the data supports the assumption in the restricted model, and

vice-versa. As can be seen in Figure 4, the weight of the marginal posterior on ρz = 1 is

considerably lower than it is in the prior. The ratio, and thus the Bayes Factor in favor of the

alternative specification is 10.2, which according to Jefferys (1961), is “substantial” evidence

in favor non-permanent shocks to z. Kass and Raftery (1995), who develop their own scale

for Bayes factors label this as “positive” evidence in favor of the alternative specification.9

This result is robust to alternative prior specifications for ρz.

Panel (b) of Table 2 shows the Bayes factor in favor of either model (constructed using the

SDDR), along with other model comparison information from the two specifications under

both Bayesian and maximum likelihood estimation. We see that, in this model, the choice

of procedure imposed to deal with the pileup problem can flip model selection. The log

marginal likelihood value, constructed using the Newton and Raftery (1994) methodology,

finds values of -533 and -526 for the baseline and alternative specifications, respectively, also

evidence generally supportive of choosing the alternative model. While our findings about

z contradict those of Laubach and Williams (2003) and Trehan and Wu (2007), we confirm

that the divergence between our results and theirs is based on the more restrictive solution to

the pileup problem used in MLE of this model. Replicating that three-step process, we found

that the log-likelihood value of the baseline model at the maximum likelihood estimates is

9In both ranking systems, this grade of evidence is considered the second level, with the next level labeled
“strong” and further levels labeled “very strong” or “decisive.”
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-518, while it is -517 under the alternative specification. The Bayesian information criterium

favors the baseline model over the alternative.

We find economic appeal in a z process subject to persistent, but transitory, shocks

because of its behavior in the period around, and following, the crisis. Under the baseline

specification (and in the MLE results) there was a fairly sudden decline in z, and thus r∗, in

2008. While many slow-moving phenomena could be invoked to bolster a strong prior belief

that z should be a random walk, these proposals need to align with the relatively sharp

movement in that time period. Figure 5 shows the median path of z under the alternative

specification and Figure 6 shows the corresponding estimate for r∗ when z is subject to

transitory shocks. In addition to the higher volatility and the much larger impact of the

Great Recession on the level of the median path of r∗, the post-crisis profile of r∗ is very

different than that of the baseline model, largely driven by the different dynamics in z.

Most notably, following the sharp dip in the Great Recession, the median path of r∗ has

generally trended in a positive direction, though it remained broadly below zero for several

years following the crisis. This is in contrast to the estimates from Holston, Laubach, and

Williams (2017) and others, where the natural rate descends in the 21st century and remains

at historically low levels through the end of the sample.10 The change to the specification

for z appears to have had very little effect on the estimate of g, a component of our final

discussion below.

4.1 Output Gap Implications

Our statistically preferred specification for z may have implications for economically impor-

tant objects such as the output gap. Figure 7 shows that while our baseline and alternative

estimates of r∗ are different from those under MLE, our estimates of the output gap are much

more in concert. Figure 7 also includes the estimate of the output gap available from the

10A related concept, as discussed in Del Negro et al. (2017), is an explicitly long-run, rather than medium
term, r∗. A short discussion of the long-run r∗ from the alternative specification is included in the online
appendix.
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Congressional Budget Office (CBO) and from the model of Pescatori and Turunen (2016),

who take signal from the CBO.

The CBO estimate may be considered an external check on model output as it can

represent a benchmark for judging our estimate of economic slack. While our Bayesian and

MLE estimates are similar to the CBO’s measure for much of the sample prior to 2000,

the estimates diverge at that point, with our measures indicating a higher level of resource

utilization in recent years. Figure 8 shows that these post-2000 differences are not the result

of dramatically different views of potential output growth by the different models over that

period. Rather, the figure shows that the recent divergence in output gap estimates is driven

by the CBO’s high estimate of potential output growth during a brief period in the late

1990s. This led to a shift in the estimated level of potential GDP, which results in a CBO

output gap estimate which ends our sample (mid-2017) at a negative level.

Figure 8 shows a remarkable similarity across the estimates of potential output growth

from the five sources. All of the model-based estimates lie well within the 90% credible set

from the baseline model and the CBO estimate lies within the set for the majority of the

time as well. Additionally, all the models appear to provide similar support for the idea that

there has been a secular decline in potential output growth in 21st century, as discussed by

Summers (2014), Eggertsson, Mehrotra, and Summers (2016) and others.

5 Conclusion

This paper re-estimates a benchmark model under looser prior assumptions and finds differ-

ent median estimates of the natural rate of interest. We find that a more complete picture of

the parameter uncertainty in the model results in a higher median estimate of the conditional

volatility of r∗. We also find that the data prefers r∗ to be affected by transitory shocks,

in contrast to previous studies. Acknowledging the potential for persistent, but transitory,

shocks to r∗ will likely help to shape the search for its economic drivers.
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6 Tables and Figures

Name Domain Density Parameter 1 Parameter 2

a1 R Normal 0 2

a2 R Normal 0 2

ar R
− Normal 0 2

b1 [0, 1] Uniform 0 1

bY R
+ Normal 0 2

ρz R
+ Normal 1 1

2

σ1 [0, 5] Uniform 0 5

σ2 [0, 5] Uniform 0 5

σ3 [0, 5] Uniform 0 5

σ4 [0, 5] Uniform 0 5

σ5 [0, 5] Uniform 0 5

Table 1: The table presents the marginal prior distributions under the individual model
parameters for the alternative specification. The prior distribution parameters are the mean
(1) and standard deviation (2) for those with Normal distributions and the end-points of the
domain interval for uniform distribution. The domains of ar, bY , ρg and ρz are truncations
of the standard form of the prior density. In the baseline specification the prior distribution
of ρz was set to be degenerate at ρz ≡ 1. We restrict λg and λz to take values in [0.01, 5],
additional discussion of the prior distributions is included in the online appendix.
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Bayesian MLE

Baseline Alternative Baseline Alternative

a1 1.251 1.270 1.531 1.530
[0.97,1.51] [0.84,1.52] [1.36,1.70] [1.36,1.70]

a2 -0.364 -0.348 -0.589 -0.587
[-0.58,-0.07] [-0.59,0.05] [-0.76,-0.42] [-0.76,-0.41]

ar -0.113 -0.093 -0.070 -0.067
[-0.19,-0.06] [-0.18,-0.06] [-0.10,-0.04] [-0.10,-0.04]

b1 0.682 0.665 0.671 0.670
[0.57,0.79] [0.56,0.78] [0.60,0.74] [0.60,0.74]

bY 0.051 0.071 0.077 0.079
[0.03,0.13] [0.04,0.15] [0.04,0.12] [0.04,0.12]

σ1 0.412 0.279 0.355 0.365
[0.11,0.66] [0.08,0.57] [0.21,0.50] [0.21,0.52]

σ2 0.794 0.795 0.791 0.791
[0.74,0.87] [0.74,0.86] [0.75,0.83] [0.75,0.83]

σ3 0.149 1.755 0.160 0.172
[0.07,1.69] [0.67,3.95] [0.10,0.23] [0.10,0.25]

σ4 0.564 0.580 0.571 0.567
[0.1,0.64] [0.25,0.65] [0.48,0.66] [0.47,0.66]

σ5 0.036 0.035 0.030 0.030
[0.02,0.13] [0.02,0.11] [0.02,0.03] [0.02,0.03]

ρz 1* 0.789 1* 0.916
[0.31,0.89] [0.77,1.06]

(a) Estimation of the Parameters

Bayesian MLE

Log Marg. Like. BF Log. Like. BIC

Baseline -533 0.1 -518 1088

Alternative -526 10.2 -517 1093

(b) Model Comparison Under Bayesian and MLE Methods

Table 2: Panel (a) shows the modes of the posterior distributions of the model parameters
from the baseline and alternative specifications, along with the MLE. The numbers in brack-
ets represent the 90% credible set from the posterior distributions of the parameters for the
Bayesian estimation, and the 90% asymptotic confidence interval for the MLE, the standard
errors come from the third estimation stage. Panel (b) shows the model comparison statis-
tics under Bayesian and MLE methods. The Log Marginal Likelihood values are built using
the Newton and Raftery (1994) methodology, and the Bayes Factor (BF) in favor of a given
model is built using the Savage-Dickey density ratio of Dickey (1971). The Bayesian Infor-
mation Criteria (BIC) is reported for the two MLE estimates. *In the baseline specification
under both estimation methods ρz is set to one.
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Posterior λz (Baseline) Posterior λg (Baseline)

Figure 1: Posterior Distributions of λz and λg Under Baseline Specification

Notes: The blue bars conform the histogram of the posterior distribution of λz and λg.
The red lines stand at the median unbiased estimates used in MLE
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Figure 2: r∗ Path (Baseline Model)

Notes: The path of r∗ under the baseline model when ρg = ρz = 1. The solid blue line shows
the median path of the smoothed estimate and the blue-shaded area shows the 90% credible
set of the estimated path. The black dashed line plots the equivalent series under MLE. The
vertical shaded bars represent NBER-dated recessions. For reference, the standard error
from the MLE estimate of r∗ averages 1.1 percentage points.
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z (Baseline) g (Baseline)

Figure 3: The Paths of the Components of r∗ Under Baseline Specification

Notes: The paths of the components of r∗ under the baseline specification. The blue line
is the median estimate, the black dotted line is the equivalent series under MLE, the shaded
area represents the 90% credible set.
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Figure 4: An Illustration of the Savage-Dickey Density Ratio

Notes: The panel on the left shows the marginal posterior distribution of ρz under the
alternative specification (the solid blue line) and the prior distribution over the same interval
(the dashed red line). The vertical gray dashed line indicated where ρz = 1. The panel on
the right shows the same distributions expanded around the region where ρz = 1. The red
circle indicates the pdf value for the prior at ρz = 1, and the blue diamond indicates the pdf
value for the marginal posterior at 1.
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Figure 5: z (Alternative)

Figure 6: r∗ Path (Alternative)

Notes: The paths of z and r∗ under the alternative model when ρz is estimated. The solid
blue line shows the median path of the smoothed (two-sided) estimate and the blue-shaded
areas represent the 90% credible sets. The vertical shaded bars represent NBER-dated
recessions.
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Figure 7: Estimates of the Output Gap

Figure 8: Estimates of Potential Output Growth

Notes: Estimates of the output gap, Figure 7, and the corresponding level of potential
output growth, Figure 8 are shown along with comparable measures from other sources.
The solid blue lines show the estimates from the baseline specification, the dotted blue lines
show the alternative specification. The red dotted lines show the equivalent estimates under
MLE, as in Holston, Laubach, and Williams (2017). The black dashed lines are from the
estimates provided by the Congressional Budget Office (CBO), and the gray dash-dotted
lines are the estimates from Pescatori and Turunen (2016) (available 1983-2015). The blue
shaded area in Figure 8 represents the 90% credible set of the growth rate of potential output
in the baseline specification.
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A Online Appendix Material

A.1 State Space Formulation

Based on the system of equations in section 2 of the paper, substituting the formula for r∗t into

the output gap equation and expanding, we can come to a version of these equations that can

be expressed in the traditional observation/transition equation style of the standard state

space model. Following some algebraic manipulation, these equations are given as follows.

First, the observation equations on real GDP and inflation.

yt = y∗t − a1y
∗

t−1 − a2y
∗

t−2 − 2arρggt−1 − 2arρggt−2

−
ar

2
ρzzt−1 −

ar

2
ρzzt−2 − 4arµg(1− ρg) + a1yt−1

+a2yt−2 +
ar

2
rt−1 +

ar

2
rt−2 + σ1ε1,t (A.1)

πt = −bY y
∗

t−1 + bY yt−1 + b1πt−1 + (1− b1)
4

∑

i=2

πt−i

3
+ σ2ε2,t (A.2)

Then, the transition equations for unobserved potential real GDP, its growth rate, and the

z process.

y∗t = y∗t−1 + µg(1− ρg) + ρggt−2 + σ5ε5,t−1 + σ4ε4,t (A.3)

zt−1 = ρzzt−2 + σ3ε3,t−1 (A.4)

gt−1 = ρggt−2 + µg(1− ρg) + σ5ε5,t−1 (A.5)

These equations can be represented in state space form using the standard structure:

st = Ast−1 + But + Cwt (A.6)

xt = Dst + Fut +Gwt (A.7)

1



where:

st =

































y∗t

y∗t−1

y∗t−2

gt−1

gt−2

zt−1

zt−2

































, xt =





yt

πt



 , ut =



































1

yt−1

yt−2

rt−1

rt−2

πt−1
4
∑

i=2

πt−i

3



































, wt =





















ε1,t

ε2,t

ε3,t−1

ε4,t

ε5,t−1





















,

and
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1 0 0 ρg 0 0 0
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0 1 0 0 0 0 0
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µg(1− ρg) 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

µg(1− ρg) 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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0 0 0 σ4 σ5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 σ5

0 0 0 0 0

0 0 σ3 0 0

0 0 0 0 0

































, D =





1 −a1 −a2 −2arρg −2arρg −arρz
2

−arρz
2

0 −bY 0 0 0 0 0



 ,

F =





−4ar(1− ρg)µg a1 a2
ar
2

ar
2

0 0

0 bY 0 0 0 b1 (1− b1)



 , G =





σ1 0 0 0 0

0 σ2 0 0 0





The ε’s are all assumed to be i.i.d. N(0, 1) variables, with the standard deviation of the

processes controlled by the σi’s.

2



A.2 Data

The data used in this analysis is the same as the US data used in Holston, Laubach, and

Williams (2017), henceforth HLW, and it is transformed in the same way. See the data

appendix in HLW for additional specifics on obtaining the data. Real GDP data are obtained

from the BEA, inflation is calculated as the annualized quarterly growth rate of the price

index for personal consumption expenditures excluding food and energy (commonly referred

to as “core PCE inflation”). We follow HLW in using a 4-quarter moving average of inflation

in period t as a proxy for inflation expectations in that period. The short-term interest rate is

the annualized nominal effective federal funds rate, where the quarterly value is constructed

as the average of the monthly values. Prior to 1965, we use the Federal Reserve Bank of

New York’s discount rate.

3



A.3 Bayesian estimation details

Some additional details:

• Restrictions on parameters (primarily inherited from HLW):

– We enforce that ar be negative and bY positive, following HLW in using the actual

restrictions ar < −0.0025 and bY > 0.025.

– As the sum of the coefficients on lags of inflation must sum to 1, we restrict b1 to

be between 0 and 1.

– Because of our expectation of a positive autocovariance for both gt and zt in the

event of stationarity, we restrict ρg and ρz to be positive.

The initialization for the states was duplicated from the process used in HLW: the initial

values for potential output y∗ were constructed by HP filtering the GDP series beginning

in 1960Q1, then using the trend component of the filtered output for the observations just

before the beginning of the data used in the estimation (1960 Q2, Q3 and Q4); the initial

values for g were the changes of that trend component in the second half of 1960. The initial

values for z were set to zero, as in HLW.

The estimation is performed in MATLAB using our own code to implement the random-

walk Metropolis-Hastings algorithm (see, e.g., Herbst and Schorfheide, 2015). The filter

code was written to execute the forward-filter, backward sample methodology of Frühwirth-

Schnatter (1994) and Carter and Kohn (1994, 1996) to obtain samples of the unobserved

states. We used a burn-in period of 250,000 draws before accepting every tenth draw for a

total of 500 kept draws from each of 20 chains, for a total sample of 10,000 draws from the

posterior distribution.
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A.4 A Flexible Specification Where g and z Are Both AR(1)

Another specification which we tested was to allow both z and g to be estimated as AR(1)

processes without forcing either to be a random walk. Allowing rhog and µg to be estimated

along with ρz did not dramatically alter the median path of r∗ that was estimated as the

alternative specification in the paper, as can be seen below in Figure A.1. This is because the

posterior distributions provide considerable evidence that the persistence parameter, ρg, can

be reasonably assumed to be one for the purposes of parsimony, see Figures A.2 and A.3. In

fact, when we conduct the same Savage-Dickey density ratio test on ρg in this specification

that we conduct on ρz in the alternative specification of the main text, we find that the data

adds weight to the posterior at the value ρg = 1, see Figure A.4. The posterior distributions

are described in Table A.1 and are generally similar to the alternative specification except

for the new parameters of g. The Newton and Raftery (1994) log marginal likelihood value

is -526, the same as that of the alternative specification.
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Figure A.1: r∗ Path

Notes: The path of r∗ under the a specification in which both g and z are estimated as
AR(1) processes. The solid blue line shows the median path of the smoothed (two-sided)
estimate and the blue-shaded area is bounded by the 5th and 95th percentiles of the estimated
path. The vertical shaded bars represent NBER-dated recessions.
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Figure A.2: µg from a flexible AR(1) speci-
fication for g
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Figure A.3: ρg from a flexible AR(1) specifi-
cation for g

Notes: The posterior distributions for the parameters of the AR(1) process for g in a
specification in which both g and z are allowed to be freely estimated.
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Figure A.4: SDDR for ρg

Notes: The illustration of the Savage-Dickey density ratio for ρg in a specification in which
g and z were both estimated AR(1) processes, accounting for the pileup problem via priors.
Evidence suggests that the assumption that ρg = 1 is valid.
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Fully Flexible Specificaton

10th Perc. Median 90th Perc.

a1 0.85 1.17 1.43

a2 -0.53 -0.30 0.00

ar -0.14 -0.08 -0.04

b1 0.59 0.68 0.76

bY 0.05 0.10 0.17

σ1 0.05 0.24 0.49

σ2 0.75 0.80 0.86

σ3 0.62 2.23 5.24

σ4 0.31 0.55 0.63

σ5 0.06 0.17 0.35

ρg 0.64 0.87 0.98

ρz 0.15 0.53 0.81

µg 0.53 0.71 0.85

λg 0.11 0.33 1.01

λz 0.16 0.80 4.73

Table A.1: Information from posterior distributions of the parameters from the fully flexible
specification
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A.5 Prior Distributions of λg and λz and Pile-Up

The prior distributions for the σi’s were chosen to reflect the high degree of uncertainty

about the volatility of the hidden processes. Using uniform distributions gave us a simple

way to allow for significant mass across potentially larger values without significantly under-

weighting the region close to zero. We use restrictions on λg and λz, requiring that they

have properties that limit the risk of pileup. Indeed, Figures A.5 and A.6 compare our

implied prior distributions for λg and λz to those used by Holston et al. (2017) and Pescatori

and Turunen (2016). Our priors on λg and λz are less informative than others used in the

literature, this is especially true for the case of λz, where inverse gamma distributions with

means near the HLW point estimates actually place more mass to the left of that estimate,

very close to zero.

Figures A.7 and A.8 show that the unobserved volatility parameters display no signs of

pileup. The signals from our analysis line up with a finding from Clark and Kozicki (2005)

that λz and λg may be higher than estimated by Laubach and Williams (2003).
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Figure A.5: Priors of λg
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Figure A.6: Priors of λz

Notes: These inverse gamma prior parameters are consistent with the moments reported
on Pescatori and Turunen (2016).

Figure A.7: Posterior Distribution of σ3 Figure A.8: Posterior Distribution of σ5

Notes: Posterior Distributions of unobserved volatilities where the “pileup problem” was a
concern show no evidence of pileup.
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A.6 The Long-run natural rate

An important difference between the baseline and alternative specifications is that in the

baseline specification r∗ is, by construction, a long-run object. Having introduced transitory

shocks in the alternative specification, we will need to transform our new measure of r∗ to

align it better for a direct comparison. To do this, we extract the lower-frequency component

of the new r∗ measure. Following Del Negro, Giannone, Giannoni, and Tambalotti (2017),

we using the medium term forecast (specifically the ten-year projection) of the rate as our

long-run r∗:

r∗LRt = Et

(

r∗t+40

)

. (A.8)

Figure A.9 shows the path of long-run r∗ under the alternative specification along with

the median path from the baseline specification. The baseline specification remains in a

relatively tight area around the alternative specification for much of the sample, then plum-

mets during the financial crisis. While the median path of the baseline model drops about

three percentage points to around -1, the dip in the alternative specification, driven more

significantly by the growth rate, is significantly less. Thus, a major factor in determining the

level of long-run r∗ in 2017 would appear to be the assumption that all the shocks during

the financial crisis are permanent.
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Figure A.9: r∗ Path

Notes: A comparison of the path of long-run r∗ under the baseline and alternative models.
The solid blue line shows the median path of the smoothed (two-sided) estimate of the
alternative specification and the blue-shaded area is bounded by the 5th and 95th percentiles
of this estimated path. The dotted blue line shows the median estimated path of the long-
run r∗ under the baseline specification. The vertical shaded bars represent NBER-dated
recessions.
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